Title: | Person Parameter Estimation |
---|---|
Description: | The PP package includes estimation of (MLE, WLE, MAP, EAP, ROBUST) person parameters for the 1,2,3,4-PL model and the GPCM (generalized partial credit model). The parameters are estimated under the assumption that the item parameters are known and fixed. The package is useful e.g. in the case that items from an item pool / item bank with known item parameters are administered to a new population of test-takers and an ability estimation for every test-taker is needed. |
Authors: | Jan Steinfeld [cre, aut]
|
Maintainer: | Jan Steinfeld <[email protected]> |
License: | GPL-3 |
Version: | 0.6.3-11 |
Built: | 2025-03-08 04:01:08 UTC |
Source: | https://github.com/jansteinfeld/pp |
This is a small helper function which creates a vector template quick and easily for the PPall()
function. Modify this template as you like.
findmodel(thres)
findmodel(thres)
thres |
A numeric matrix which contains the threshold parameter for each item. NA is allowed - in fact expected! |
This function tries to guess the model which was applied to each item by using the matrix of threshold parameters. It only discriminates between GPCM and 4-PL model, and returns a character vector of length equal to the number of items, that contains "GPCM"
or "4PL"
entries depending on the structure of the thres matrix.
Manuel Reif
################# GPCM and 4PL mixed ######################################### # some threshold parameters THRES <- matrix(c(-2,-1.23,1.11,3.48,1 ,2,-1,-0.2,0.5,1.3,-0.8,1.5),nrow=2) # slopes sl <- c(0.5,1,1.5,1.1,1,0.98) THRESx <- THRES THRESx[2,1:3] <- NA # for the 4PL item the estimated parameters are submitted, # for the GPCM items the lower asymptote = 0 # and the upper asymptote = 1. la <- c(0.02,0.1,0,0,0,0) ua <- c(0.97,0.91,1,1,1,1) awmatrix <- matrix(c(1,0,1,0,1,1,1,0,0,1 ,2,0,0,0,0,0,0,0,0,1 ,1,2,2,1,1,1,1,0,0,1),byrow=TRUE,nrow=5) # create model2est # this function tries to help finding the appropriate # model by inspecting the THRESx. model2est <- findmodel(THRESx) # MLE respmixed_mle <- PPall(respm = awmatrix,thres = THRESx, slopes = sl,lowerA = la, upperA=ua,type = "mle", model2est=model2est) # WLE respmixed_wle <- PPall(respm = awmatrix,thres = THRESx, slopes = sl,lowerA = la, upperA=ua,type = "wle", model2est=model2est) # MAP estimation respmixed_map <- PPall(respm = awmatrix,thres = THRESx, slopes = sl,lowerA = la, upperA=ua, type = "map", model2est=model2est) # EAP estimation respmixed_eap <- PPall(respm = awmatrix,thres = THRESx, slopes = sl,lowerA = la, upperA=ua, type = "eap", model2est=model2est) # Robust estimation respmixed_rob <- PPall(respm = awmatrix,thres = THRESx, slopes = sl,lowerA = la, upperA=ua, type = "robust", model2est=model2est) # summary to summarize the results summary(respmixed_mle) summary(respmixed_wle) summary(respmixed_map) summary(respmixed_eap) summary(respmixed_rob)
################# GPCM and 4PL mixed ######################################### # some threshold parameters THRES <- matrix(c(-2,-1.23,1.11,3.48,1 ,2,-1,-0.2,0.5,1.3,-0.8,1.5),nrow=2) # slopes sl <- c(0.5,1,1.5,1.1,1,0.98) THRESx <- THRES THRESx[2,1:3] <- NA # for the 4PL item the estimated parameters are submitted, # for the GPCM items the lower asymptote = 0 # and the upper asymptote = 1. la <- c(0.02,0.1,0,0,0,0) ua <- c(0.97,0.91,1,1,1,1) awmatrix <- matrix(c(1,0,1,0,1,1,1,0,0,1 ,2,0,0,0,0,0,0,0,0,1 ,1,2,2,1,1,1,1,0,0,1),byrow=TRUE,nrow=5) # create model2est # this function tries to help finding the appropriate # model by inspecting the THRESx. model2est <- findmodel(THRESx) # MLE respmixed_mle <- PPall(respm = awmatrix,thres = THRESx, slopes = sl,lowerA = la, upperA=ua,type = "mle", model2est=model2est) # WLE respmixed_wle <- PPall(respm = awmatrix,thres = THRESx, slopes = sl,lowerA = la, upperA=ua,type = "wle", model2est=model2est) # MAP estimation respmixed_map <- PPall(respm = awmatrix,thres = THRESx, slopes = sl,lowerA = la, upperA=ua, type = "map", model2est=model2est) # EAP estimation respmixed_eap <- PPall(respm = awmatrix,thres = THRESx, slopes = sl,lowerA = la, upperA=ua, type = "eap", model2est=model2est) # Robust estimation respmixed_rob <- PPall(respm = awmatrix,thres = THRESx, slopes = sl,lowerA = la, upperA=ua, type = "robust", model2est=model2est) # summary to summarize the results summary(respmixed_mle) summary(respmixed_wle) summary(respmixed_map) summary(respmixed_eap) summary(respmixed_rob)
This dataset contains data simulated with the sim_4pl()
function.
A data.frame with 60 rows and 14 columns.
simulation
This function uses a jackknife approach to compute person parameters. The jackknife ability measure is based on primarily estimated models (PP_4pl()
, PP_gpcm()
or PPall()
) - so the function is applied on the estimation objects, and jackknifed ability measures are returned.
JKpp(estobj, ...) ## S3 method for class 'fourpl' JKpp( estobj, cmeth = "mean", maxsteps = 500, exac = 0.001, fullmat = FALSE, ctrl = list(), ... ) ## S3 method for class 'gpcm' JKpp( estobj, cmeth = "mean", maxsteps = 500, exac = 0.001, fullmat = FALSE, ctrl = list(), ... ) ## S3 method for class 'gpcm4pl' JKpp( estobj, cmeth = "mean", maxsteps = 500, exac = 0.001, fullmat = FALSE, ctrl = list(), ... ) ## S3 method for class 'jk' print(x, ...) ## S3 method for class 'jk' summary(object, nrowmax = 15, ...)
JKpp(estobj, ...) ## S3 method for class 'fourpl' JKpp( estobj, cmeth = "mean", maxsteps = 500, exac = 0.001, fullmat = FALSE, ctrl = list(), ... ) ## S3 method for class 'gpcm' JKpp( estobj, cmeth = "mean", maxsteps = 500, exac = 0.001, fullmat = FALSE, ctrl = list(), ... ) ## S3 method for class 'gpcm4pl' JKpp( estobj, cmeth = "mean", maxsteps = 500, exac = 0.001, fullmat = FALSE, ctrl = list(), ... ) ## S3 method for class 'jk' print(x, ...) ## S3 method for class 'jk' summary(object, nrowmax = 15, ...)
estobj |
An object which originates from using |
... |
More input. |
cmeth |
Choose the centering method, to summarize the n jackknife results to one single ability estimate. There are three valid entries: "mean", "median" and "AMT" (see Details for further description). |
maxsteps |
The maximum number of steps the NR Algorithm will take. |
exac |
How accurate are the estimates supposed to be? Default is 0.001. |
fullmat |
Default = FALSE. If TRUE, the function returns the whole jackknife matrix, which is the basis for the jackknife estimator. |
ctrl |
More controls |
x |
an object of class |
object |
An object of class |
nrowmax |
When printing the matrix of estimates - how many rows should be shown? Default = 15. |
Please use the Jackknife Standard-Error output with caution! It is implemented as suggested in Wainer and Wright (1980), but the results seem a bit strange, because the JK-SE is supposed to overestimate the SE compared to the MLE-SE. Actually, in all examples an underestimation of the SE was observed compared to the MLE/WLE-SE!
AMT-robustified jackknife: When choosing cmeth = AMT
, the jackknife ability subsample estimates and the original supplied ability estimate are combined to a single jackknife-ability value by the Sine M-estimator. The AMT (or Sine M-estimator) is one of the winners in the Princeton Robustness Study of 1972. To get a better idea how the estimation process works, take a closer look to the paper which is mentioned below (Wainer & Wright, 1980).
Manuel Reif
Wainer, H., & Wright, B. D. (1980). Robust estimation of ability in the Rasch model. Psychometrika, 45(3), 373-391.
################# Jackknife ################################################### ### 4 PL model ###### ### data creation ########## set.seed(1623) # intercepts diffpar <- seq(-3,3,length=12) # slope parameters sl <- round(runif(12,0.5,1.5),2) la <- round(runif(12,0,0.25),2) ua <- round(runif(12,0.8,1),2) # response matrix abpar <- rnorm(10,0,1.7) awm <- sim_4pl(beta = diffpar,alpha = sl,lowerA = la,upperA=ua,theta = abpar) ## 1PL model ##### # MLE res1plmle <- PP_4pl(respm = awm,thres = diffpar,type = "mle") # WLE res1plwle <- PP_4pl(respm = awm,thres = diffpar,type = "wle") # MAP estimation res1plmap <- PP_4pl(respm = awm,thres = diffpar,type = "map") # EAP estimation res1pleap <- PP_4pl(respm = awm,thres = diffpar,type = "eap") # robust estimation res1plrob <- PP_4pl(respm = awm,thres = diffpar,type = "robust") ## centering method = mean res_jk1 <- JKpp(res1plmle) res_jk2 <- JKpp(res1plwle) res_jk3 <- JKpp(res1plmap) res_jk4 <- JKpp(res1plrob) res_jk5 <- JKpp(res1pleap) summary(res_jk1) ## centering method = median res_jk1a <- JKpp(res1plmle,cmeth = "median") res_jk2a <- JKpp(res1plwle,cmeth = "median") res_jk3a <- JKpp(res1plmap,cmeth = "median") summary(res_jk2a) ## centering method = AMT res_jk1b <- JKpp(res1plmle,cmeth = "AMT") res_jk2b <- JKpp(res1plwle,cmeth = "AMT") res_jk3b <- JKpp(res1plmap,cmeth = "AMT") summary(res_jk3b) ## 2PL model ##### # MLE res2plmle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,type = "mle") # WLE res2plwle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,type = "wle") # MAP estimation res2plmap <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,type = "map") # EAP estimation res2pleap <- PP_4pl(respm = awm,thres = diffpar,slopes = sl,type = "eap") # robust estimation res2plrob <- PP_4pl(respm = awm,thres = diffpar,slopes = sl,type = "robust") res_jk6 <- JKpp(res2plmle) res_jk7 <- JKpp(res2plwle) res_jk8 <- JKpp(res2plmap) res_jk9 <- JKpp(res2pleap) res_jk10 <- JKpp(res2plrob) ### GPCM model ###### # some threshold parameters THRES <- matrix(c(-2,-1.23,1.11,3.48,1 ,2,-1,-0.2,0.5,1.3,-0.8,1.5),nrow=2) # slopes sl <- c(0.5,1,1.5,1.1,1,0.98) awmatrix <- matrix(c(1,0,2,0,1,1,1,0,0,1,2,0,0,0,0,0,0,0,0,1, 1,2,2,1,1,1,1,0,0,1),byrow=TRUE,nrow=5) ### PCM model ###### # MLE respcmlmle <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = rep(1,ncol(THRES)),type = "mle") # WLE respcmwle <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = rep(1,ncol(THRES)),type = "wle") # MAP estimation respcmmap <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = rep(1,ncol(THRES)),type = "map") res_jk11 <- JKpp(respcmlmle) res_jk12 <- JKpp(respcmwle) res_jk13 <- JKpp(respcmmap) ### GPCM/4-PL mixed model ###### THRES <- matrix(c(-2,-1.23,1.11,3.48,1 ,2,-1,-0.2,0.5,1.3,-0.8,1.5),nrow=2) sl <- c(0.5,1,1.5,1.1,1,0.98) THRESx <- THRES THRESx[2,1:3] <- NA # for the 4PL item the estimated parameters are submitted, # for the GPCM items the lower asymptote = 0 # and the upper asymptote = 1. la <- c(0.02,0.1,0,0,0,0) ua <- c(0.97,0.91,1,1,1,1) awmatrix <- matrix(c(1,0,1,0,1,1,1,0,0,1 ,2,0,0,0,1,0,0,0,0,1 ,0,2,2,1,1,1,1,0,0,1),byrow=TRUE,nrow=5) # create model2est # this function tries to help finding the appropriate # model by inspecting the THRESx. model2est <- findmodel(THRESx) # MLE estimation respmixed_mle <- PPall(respm = awmatrix, thres = THRESx, slopes = sl, lowerA = la, upperA=ua, type = "mle", model2est=model2est) # WLE estimation respmixed_wle <- PPall(respm = awmatrix, thres = THRESx, slopes = sl, lowerA = la, upperA=ua, type = "wle", model2est=model2est) res_jk114 <- JKpp(respmixed_mle) res_jk115 <- JKpp(respmixed_wle)
################# Jackknife ################################################### ### 4 PL model ###### ### data creation ########## set.seed(1623) # intercepts diffpar <- seq(-3,3,length=12) # slope parameters sl <- round(runif(12,0.5,1.5),2) la <- round(runif(12,0,0.25),2) ua <- round(runif(12,0.8,1),2) # response matrix abpar <- rnorm(10,0,1.7) awm <- sim_4pl(beta = diffpar,alpha = sl,lowerA = la,upperA=ua,theta = abpar) ## 1PL model ##### # MLE res1plmle <- PP_4pl(respm = awm,thres = diffpar,type = "mle") # WLE res1plwle <- PP_4pl(respm = awm,thres = diffpar,type = "wle") # MAP estimation res1plmap <- PP_4pl(respm = awm,thres = diffpar,type = "map") # EAP estimation res1pleap <- PP_4pl(respm = awm,thres = diffpar,type = "eap") # robust estimation res1plrob <- PP_4pl(respm = awm,thres = diffpar,type = "robust") ## centering method = mean res_jk1 <- JKpp(res1plmle) res_jk2 <- JKpp(res1plwle) res_jk3 <- JKpp(res1plmap) res_jk4 <- JKpp(res1plrob) res_jk5 <- JKpp(res1pleap) summary(res_jk1) ## centering method = median res_jk1a <- JKpp(res1plmle,cmeth = "median") res_jk2a <- JKpp(res1plwle,cmeth = "median") res_jk3a <- JKpp(res1plmap,cmeth = "median") summary(res_jk2a) ## centering method = AMT res_jk1b <- JKpp(res1plmle,cmeth = "AMT") res_jk2b <- JKpp(res1plwle,cmeth = "AMT") res_jk3b <- JKpp(res1plmap,cmeth = "AMT") summary(res_jk3b) ## 2PL model ##### # MLE res2plmle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,type = "mle") # WLE res2plwle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,type = "wle") # MAP estimation res2plmap <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,type = "map") # EAP estimation res2pleap <- PP_4pl(respm = awm,thres = diffpar,slopes = sl,type = "eap") # robust estimation res2plrob <- PP_4pl(respm = awm,thres = diffpar,slopes = sl,type = "robust") res_jk6 <- JKpp(res2plmle) res_jk7 <- JKpp(res2plwle) res_jk8 <- JKpp(res2plmap) res_jk9 <- JKpp(res2pleap) res_jk10 <- JKpp(res2plrob) ### GPCM model ###### # some threshold parameters THRES <- matrix(c(-2,-1.23,1.11,3.48,1 ,2,-1,-0.2,0.5,1.3,-0.8,1.5),nrow=2) # slopes sl <- c(0.5,1,1.5,1.1,1,0.98) awmatrix <- matrix(c(1,0,2,0,1,1,1,0,0,1,2,0,0,0,0,0,0,0,0,1, 1,2,2,1,1,1,1,0,0,1),byrow=TRUE,nrow=5) ### PCM model ###### # MLE respcmlmle <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = rep(1,ncol(THRES)),type = "mle") # WLE respcmwle <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = rep(1,ncol(THRES)),type = "wle") # MAP estimation respcmmap <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = rep(1,ncol(THRES)),type = "map") res_jk11 <- JKpp(respcmlmle) res_jk12 <- JKpp(respcmwle) res_jk13 <- JKpp(respcmmap) ### GPCM/4-PL mixed model ###### THRES <- matrix(c(-2,-1.23,1.11,3.48,1 ,2,-1,-0.2,0.5,1.3,-0.8,1.5),nrow=2) sl <- c(0.5,1,1.5,1.1,1,0.98) THRESx <- THRES THRESx[2,1:3] <- NA # for the 4PL item the estimated parameters are submitted, # for the GPCM items the lower asymptote = 0 # and the upper asymptote = 1. la <- c(0.02,0.1,0,0,0,0) ua <- c(0.97,0.91,1,1,1,1) awmatrix <- matrix(c(1,0,1,0,1,1,1,0,0,1 ,2,0,0,0,1,0,0,0,0,1 ,0,2,2,1,1,1,1,0,0,1),byrow=TRUE,nrow=5) # create model2est # this function tries to help finding the appropriate # model by inspecting the THRESx. model2est <- findmodel(THRESx) # MLE estimation respmixed_mle <- PPall(respm = awmatrix, thres = THRESx, slopes = sl, lowerA = la, upperA=ua, type = "mle", model2est=model2est) # WLE estimation respmixed_wle <- PPall(respm = awmatrix, thres = THRESx, slopes = sl, lowerA = la, upperA=ua, type = "wle", model2est=model2est) res_jk114 <- JKpp(respmixed_mle) res_jk115 <- JKpp(respmixed_wle)
Compute several person fit statistic for the 1-PL, 2-PL, 3-PL, 4-PL and PCM.
Pfit(respm, pp, fitindices, SE = FALSE) ## S3 method for class 'gpcm' Pfit(respm, pp, fitindices = c("infit", "outfit"), SE = FALSE)
Pfit(respm, pp, fitindices, SE = FALSE) ## S3 method for class 'gpcm' Pfit(respm, pp, fitindices = c("infit", "outfit"), SE = FALSE)
respm |
numeric response matrix |
pp |
object of the class fourpl with estimated person parameter |
fitindices |
character vector of desired person fit statistics c("lz","lzstar","infit","outfit") |
SE |
logical: if true standard errors are computed using jackknife method |
Please note that currently only the likelihood based LZ-Index (Drasgow, Levine, and Williams, 1985) and LZ*-Index (Snijders, 2001) are implemented. Also the INFIT-OUTIFT (Wright and Masters, 1982, 1990) statistic as well as the polytomouse version of INFIT-OUTFIT are supported. Other person fit statistics will be added soon.
The calculation of the person fit statistics requires the numeric response-matrix as well as an object of the fourpl-class. So first you should estimate the person parameter and afterwards calculate the person fit statistics. You could also use our PPass-function to estimate the person parameter and calculate the desired person fit simultaneously. It is possible to calculate several person fit statistics at once, you only have to specify them in a vector.
For the Partial Credit model we currently support the infit-outfit statistic. Please submit also the numeric response-matrix as well as the estimated person parameter with an gpcm-class.
list of person-fits for each person-fit statistic
the list of person-fits contains the calculated person-fit (like lz, lzstar) and also additional information like p-value or standard error if desired.
the additional information is provided after the short form of the personfit
lz (lz)
lzstar (lzs)
infit the mean-square statistic (in)
outfit the mean-square statistic (ou)
_unst: unstandardised
_se: standard error
_t: t-value
_chisq: $chi^2$-value
_df: defrees of freedom
_pv: p-value
Jan Steinfeld
Armstrong, R. D., Stoumbos, Z. G., Kung, M. T. & Shi, M. (2007). On the performance of the lz person-fit statistic. Practical Assessment, Research & Evaluation, 12(16). Chicago
De La Torre, J., & Deng, W. (2008). Improving Person-Fit Assessment by Correcting the Ability Estimate and Its Reference Distribution. Journal of Educational Measurement, 45(2), 159-177.
Drasgow, F., Levine, M. V. & Williams, E. A. (1985) Appropriateness measurement with polychotomous item response models and standardized indices. British Journal of Mathematical and Statistical Psychology, 38(1), 67–86.
Efron, B., & Stein, C. (1981). The jackknife estimate of variance. The Annals of Statistics, 9(3), 586-596.
Karabatsos, G. (2003) Comparing the Aberrant Response Detection Performance of Thirty-Six Person-Fit Statistics. Applied Measurement In Education, 16(4), 277–298.
Magis, D., Raiche, G. & Beland, S. (2012) A didactic presentation of Snijders's l[sub]z[/sub] index of person fit with emphasis on response model selection and ability estimation. Journal of Educational and Behavioral Statistics, 37(1), 57–81.
Meijer, R. R. & Sijtsma, K. (2001) Methodology review: Evaluating person fit. Applied Psychological Measurement, 25(2), 107–135.
Molenaar, I. W. & Hoijtink, H. (1990) The many null distributions of person fit indices. Psychometrika, 55(1), 75–106.
Mousavi, A. & Cui, Y. Evaluate the performance of and of person fit: A simulation study.
Reise, S. P. (1990). A comparison of item-and person-fit methods of assessing model-data fit in IRT. Applied Psychological Measurement, 14(2), 127-137.
Snijders, T. B. (2001) Asymptotic null distribution of person fit statistics with estimated person parameter. Psychometrika, 66(3), 331–342.
Wright, B. D. & Masters, G. N. (1990). Computation of OUTFIT and INFIT Statistics. Rasch Measurement Transactions, 3:4, 84-85.
Wright, B. D., & Masters, G. N. (1982). Rating Scale Analysis. Rasch Measurement. MESA Press, 5835 S. Kimbark Avenue, Chicago, IL 60637.
################# Pfit ################################################### ### data creation ########## set.seed(1337) # intercepts diffpar <- seq(-3,3,length=15) # slope parameters sl <- round(runif(15,0.5,1.5),2) la <- round(runif(15,0,0.25),2) ua <- round(runif(15,0.8,1),2) # response matrix awm <- matrix(sample(0:1,100*15,replace=TRUE),ncol=15) # ------------------------------------------------------------------------ ## 1PL model ##### # ------------------------------------------------------------------------ # MLE res1plmle <- PP_4pl(respm = awm,thres = diffpar,type = "mle") # WLE res1plwle <- PP_4pl(respm = awm,thres = diffpar,type = "wle") # MAP estimation res1plmap <- PP_4pl(respm = awm,thres = diffpar,type = "map") # ------------------------------------------------------------------------ ## LZ*-Index ##### Pfit(respm=awm,pp=res1plwle,fitindices="lzstar") Pfit(respm=awm,pp=res1plmle,fitindices="lzstar") Pfit(respm=awm,pp=res1plmap,fitindices="lzstar") ## LZ*-Index combined with Infit-Outfit ##### Pfit(respm=awm,pp=res1plwle,fitindices=c("lzstar","infit","outfit")) # ------------------------------------------------------------------------ ########################################################################## # ------------------------------------------------------------------------ ## 2PL model ##### # ------------------------------------------------------------------------ # MLE res2plmle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,type = "mle") # WLE res2plwle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,type = "wle") # ------------------------------------------------------------------------ ## LZ*-Index ##### Pfit(respm=awm,pp=res2plwle,fitindices="lzstar") Pfit(respm=awm,pp=res2plmle,fitindices="lzstar") ## LZ*-Index combined with Infit-Outfit ##### Pfit(respm=awm,pp=res2plwle,fitindices=c("lzstar","infit","outfit")) # ------------------------------------------------------------------------ ########################################################################## # ------------------------------------------------------------------------ ## 3PL model ##### # ------------------------------------------------------------------------ # MLE res3plmle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,type = "mle") # WLE res3plwle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,type = "wle") # ------------------------------------------------------------------------ ## LZ*-Index ##### Pfit(respm=awm,pp=res3plwle,fitindices="lzstar") Pfit(respm=awm,pp=res3plmle,fitindices="lzstar") ## LZ*-Index combined with Infit-Outfit ##### Pfit(respm=awm,pp=res3plwle,fitindices=c("lzstar","infit","outfit")) # ------------------------------------------------------------------------ ########################################################################## # ------------------------------------------------------------------------ ## 4PL model ##### # ------------------------------------------------------------------------ # MLE res4plmle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,upperA=ua,type = "mle") # WLE res4plwle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,upperA=ua,type = "wle") # ------------------------------------------------------------------------ ## LZ*-Index ##### Pfit(respm=awm,pp=res4plwle,fitindices="lzstar") Pfit(respm=awm,pp=res4plmle,fitindices="lzstar") ## LZ*-Index combined with Infit-Outfit ##### Pfit(respm=awm,pp=res4plwle,fitindices=c("lzstar","infit","outfit")) # ------------------------------------------------------------------------ ##########################################################################
################# Pfit ################################################### ### data creation ########## set.seed(1337) # intercepts diffpar <- seq(-3,3,length=15) # slope parameters sl <- round(runif(15,0.5,1.5),2) la <- round(runif(15,0,0.25),2) ua <- round(runif(15,0.8,1),2) # response matrix awm <- matrix(sample(0:1,100*15,replace=TRUE),ncol=15) # ------------------------------------------------------------------------ ## 1PL model ##### # ------------------------------------------------------------------------ # MLE res1plmle <- PP_4pl(respm = awm,thres = diffpar,type = "mle") # WLE res1plwle <- PP_4pl(respm = awm,thres = diffpar,type = "wle") # MAP estimation res1plmap <- PP_4pl(respm = awm,thres = diffpar,type = "map") # ------------------------------------------------------------------------ ## LZ*-Index ##### Pfit(respm=awm,pp=res1plwle,fitindices="lzstar") Pfit(respm=awm,pp=res1plmle,fitindices="lzstar") Pfit(respm=awm,pp=res1plmap,fitindices="lzstar") ## LZ*-Index combined with Infit-Outfit ##### Pfit(respm=awm,pp=res1plwle,fitindices=c("lzstar","infit","outfit")) # ------------------------------------------------------------------------ ########################################################################## # ------------------------------------------------------------------------ ## 2PL model ##### # ------------------------------------------------------------------------ # MLE res2plmle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,type = "mle") # WLE res2plwle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,type = "wle") # ------------------------------------------------------------------------ ## LZ*-Index ##### Pfit(respm=awm,pp=res2plwle,fitindices="lzstar") Pfit(respm=awm,pp=res2plmle,fitindices="lzstar") ## LZ*-Index combined with Infit-Outfit ##### Pfit(respm=awm,pp=res2plwle,fitindices=c("lzstar","infit","outfit")) # ------------------------------------------------------------------------ ########################################################################## # ------------------------------------------------------------------------ ## 3PL model ##### # ------------------------------------------------------------------------ # MLE res3plmle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,type = "mle") # WLE res3plwle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,type = "wle") # ------------------------------------------------------------------------ ## LZ*-Index ##### Pfit(respm=awm,pp=res3plwle,fitindices="lzstar") Pfit(respm=awm,pp=res3plmle,fitindices="lzstar") ## LZ*-Index combined with Infit-Outfit ##### Pfit(respm=awm,pp=res3plwle,fitindices=c("lzstar","infit","outfit")) # ------------------------------------------------------------------------ ########################################################################## # ------------------------------------------------------------------------ ## 4PL model ##### # ------------------------------------------------------------------------ # MLE res4plmle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,upperA=ua,type = "mle") # WLE res4plwle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,upperA=ua,type = "wle") # ------------------------------------------------------------------------ ## LZ*-Index ##### Pfit(respm=awm,pp=res4plwle,fitindices="lzstar") Pfit(respm=awm,pp=res4plmle,fitindices="lzstar") ## LZ*-Index combined with Infit-Outfit ##### Pfit(respm=awm,pp=res4plwle,fitindices=c("lzstar","infit","outfit")) # ------------------------------------------------------------------------ ##########################################################################
PP-package has been developed to easily compute ML, WL (Warm 1989), MAP, EAP and robust estimates of person parameters for a given response matrix and given item parameters of the 1,2,3,4-PL model (Birnbaum 1968, Barton & Lord 1981) and the GPCM (Muraki 1992). It provides c++ routines which makes estimation of parameters very fast. Additional some methods to calculate the person fit are provided like the infit-outfit-, lz- and lz*-idex. Read the vignettes for getting started with this package.
Manuel Reif and Jan Steinfeld
Barton, M. A., & Lord, F. M. (1981). An Upper Asymptote for the Three-Parameter Logistic Item-Response Model.
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In Lord, F.M. & Novick, M.R. (Eds.), Statistical theories of mental test scores. Reading, MA: Addison-Wesley.
Drasgow, F., Levine, M. V. & Williams, E. A. (1985) Appropriateness measurement with polychotomous item response models and standardized indices. British Journal of Mathematical and Statistical Psychology, 38(1), 67–86.
Muraki, Eiji (1992). A Generalized Partial Credit Model: Application of an EM Algorithm. Applied Psychological Measurement, 16, 159-176.
Samejima, Fumiko (1993). An approximation of the bias function of the maximum likelihood estimate of a latent variable for the general case where the item responses are discrete. Psychometrika, 58, 119-138.
Snijders, T. B. (2001) Asymptotic null distribution of person fit statistics with estimated person parameter. Psychometrika, 66(3), 331–342.
Warm, Thomas A. (1989). Weighted Likelihood Estimation Of Ability In Item Response Theory. Psychometrika, 54, 427-450.
Wright, B. D. & Masters, G. N. (1990). Computation of OUTFIT and INFIT Statistics. Rasch Measurement Transactions, 3:4, 84-85.
Yen, Y.-C., Ho, R.-G., Liao, W.-W., Chen, L.-J., & Kuo, C.-C. (2012). An empirical evaluation of the slip correction in the four parameter logistic models with computerized adaptive testing. Applied Psychological Measurement, 36, 75-87.
PPass, PP_gpcm, PP_4pl, PPall, Pfit
set.seed(1522) # intercepts diffpar <- seq(-3,3,length=12) # slope parameters sl <- round(runif(12,0.5,1.5),2) la <- round(runif(12,0,0.25),2) ua <- round(runif(12,0.8,1),2) # response matrix awm <- matrix(sample(0:1,10*12,replace=TRUE),ncol=12) # MLE estimation res3plmle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,type = "mle") # WLE estimation res3plwle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,type = "wle") # MAP estimation res3plmap <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,type = "map") # calculate person fit res3plmlepfit <- Pfit(respm=awm,pp=res3plmle,fitindices=c("infit","outfit")) # or estimate person parameter and calculate person fit in one step out <- PPass(respdf = data.frame(awm),thres = diffpar, items="all", mod=c("1PL"), fitindices= c("lz","lzstar","infit","outfit"))
set.seed(1522) # intercepts diffpar <- seq(-3,3,length=12) # slope parameters sl <- round(runif(12,0.5,1.5),2) la <- round(runif(12,0,0.25),2) ua <- round(runif(12,0.8,1),2) # response matrix awm <- matrix(sample(0:1,10*12,replace=TRUE),ncol=12) # MLE estimation res3plmle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,type = "mle") # WLE estimation res3plwle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,type = "wle") # MAP estimation res3plmap <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,type = "map") # calculate person fit res3plmlepfit <- Pfit(respm=awm,pp=res3plmle,fitindices=c("infit","outfit")) # or estimate person parameter and calculate person fit in one step out <- PPass(respdf = data.frame(awm),thres = diffpar, items="all", mod=c("1PL"), fitindices= c("lz","lzstar","infit","outfit"))
Compute Person Parameters for the 1/2/3/4-PL model and choose between five common estimation techniques: ML, WL, MAP, EAP and a robust estimation. All item parameters are treated as fixed.
PP_4pl( respm, thres, slopes = NULL, lowerA = NULL, upperA = NULL, theta_start = NULL, mu = NULL, sigma2 = NULL, type = "wle", maxsteps = 40, exac = 0.001, H = 1, ctrl = list() )
PP_4pl( respm, thres, slopes = NULL, lowerA = NULL, upperA = NULL, theta_start = NULL, mu = NULL, sigma2 = NULL, type = "wle", maxsteps = 40, exac = 0.001, H = 1, ctrl = list() )
respm |
An integer matrix, which contains the examinees responses. A persons x items matrix is expected. |
thres |
A numeric vector or a numeric matrix which contains the threshold parameter (also known as difficulty parameter or beta parameter) for each item. If a matrix is submitted, the first row must contain only zeroes! |
slopes |
A numeric vector, which contains the slope parameters for each item - one parameter per item is expected. |
lowerA |
A numeric vector, which contains the lower asymptote parameters (kind of guessing parameter) for each item. |
upperA |
numeric vector, which contains the upper asymptote parameters for each item. |
theta_start |
A vector which contains a starting value for each person. If NULL is submitted, the starting values are set automatically. If a scalar is submitted, this start value is used for each person. |
mu |
A numeric vector of location parameters for each person in case of MAP or EAP estimation. If nothing is submitted this is set to 0 for each person for MAP estimation. |
sigma2 |
A numeric vector of variance parameters for each person in case of MAP or EAP estimation. If nothing is submitted this is set to 1 for each person for MAP estimation. |
type |
Which maximization should be applied? There are five valid entries possible: "mle", "wle", "map", "eap" and "robust". To choose between the methods, or just to get a deeper understanding the papers mentioned below are quite helpful. The default is |
maxsteps |
The maximum number of steps the NR Algorithm will take. Default = 100. |
exac |
How accurate are the estimates supposed to be? Default is 0.001. |
H |
In case |
ctrl |
more controls:
|
With this function you can estimate:
1-PL model (Rasch model) by submitting: the data matrix, item difficulties and nothing else, since the 1-PL model is merely a 4-PL model with: any slope = 1, any lower asymptote = 0 and any upper asymptote = 1!
2-PL model by submitting: the data matrix, item difficulties and slope parameters. Lower and upper asymptotes are automatically set to 0 und 1 respectively.
3-PL model by submitting anything except the upper asymptote parameters
4-PL model —> submit all parameters ...
The probability function of the 4-PL model is:
In our case is to be estimated, and the four item parameters are assumed as fixed (usually these are estimates of a former scaling procedure).
The 3-PL model is the same, except that .
In the 2-PL model .
In the 1-PL model .
.
The robust estimation method, applies a Huber-type estimator (Schuster & Yuan, 2011), which downweights responses to items which provide little information for the ability estimation. First a residuum is estimated and on this basis, the weight for each observation is computed.
residuum:
weight:
The function returns a list with the estimation results and pretty much everything which has been submitted to fit the model. The estimation results can be found in OBJ$resPP
. The core result is a number_of_persons x 2 matrix, which contains the ability estimate and the SE for each submitted person.
Manuel Reif
Baker, Frank B., and Kim, Seock-Ho (2004). Item Response Theory - Parameter Estimation Techniques. CRC-Press.
Barton, M. A., & Lord, F. M. (1981). An Upper Asymptote for the Three-Parameter Logistic Item-Response Model.
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In Lord, F.M. & Novick, M.R. (Eds.), Statistical theories of mental test scores. Reading, MA: Addison-Wesley.
Magis, D. (2013). A note on the item information function of the four-parameter logistic model. Applied Psychological Measurement, 37(4), 304-315.
Samejima, Fumiko (1993). The bias function of the maximum likelihood estimate of ability for the dichotomous response level. Psychometrika, 58, 195-209.
Samejima, Fumiko (1993). An approximation of the bias function of the maximum likelihood estimate of a latent variable for the general case where the item responses are discrete. Psychometrika, 58, 119-138.
Schuster, C., & Yuan, K. H. (2011). Robust estimation of latent ability in item response models. Journal of Educational and Behavioral Statistics, 36(6), 720-735.
Warm, Thomas A. (1989). Weighted Likelihood Estimation Of Ability In Item Response Theory. Psychometrika, 54, 427-450.
Yen, Y.-C., Ho, R.-G., Liao, W.-W., Chen, L.-J., & Kuo, C.-C. (2012). An empirical evaluation of the slip correction in the four parameter logistic models with computerized adaptive testing. Applied Psychological Measurement, 36, 75-87.
PPass, PPall, PP_gpcm, JKpp, PV
################# 4 PL ############################################################# ### real data ########## data(pp_amt) d <- as.matrix(pp_amt$daten_amt[,-(1:7)]) rd_res <- PP_4pl(respm = d, thres = pp_amt$betas[,2], type = "wle") summary(rd_res) rd_res1 <- PP_4pl(respm = d, thres = pp_amt$betas[,2], theta_start = 0,type = "wle") summary(rd_res1) ### fake data ########## # smaller ... faster set.seed(1522) # intercepts diffpar <- seq(-3,3,length=12) # slope parameters sl <- round(runif(12,0.5,1.5),2) la <- round(runif(12,0,0.25),2) ua <- round(runif(12,0.8,1),2) # response matrix awm <- matrix(sample(0:1,10*12,replace=TRUE),ncol=12) ## 1PL model ##### # MLE res1plmle <- PP_4pl(respm = awm,thres = diffpar,type = "mle") # WLE res1plwle <- PP_4pl(respm = awm,thres = diffpar,type = "wle") # MAP estimation res1plmap <- PP_4pl(respm = awm,thres = diffpar,type = "map") # EAP estimation res1pleap <- PP_4pl(respm = awm,thres = diffpar,type = "eap") # robust estimation res1plrob <- PP_4pl(respm = awm,thres = diffpar,type = "robust") # summarize results summary(res1plmle) summary(res1plwle) summary(res1plmap) ## 2PL model ##### # MLE res2plmle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,type = "mle") # WLE res2plwle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,type = "wle") # MAP estimation res2plmap <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,type = "map") # EAP estimation res2pleap <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,type = "eap") # robust estimation res2plrob <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,type = "robust") ## 3PL model ##### # MLE res3plmle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,type = "mle") # WLE res3plwle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,type = "wle") # MAP estimation res3plmap <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,type = "map") # EAP estimation res3pleap <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la, type = "eap") ## 4PL model ##### # MLE res4plmle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,upperA=ua,type = "mle") # WLE res4plwle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,upperA=ua,type = "wle") # MAP estimation res4plmap <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,upperA=ua,type = "map") # EAP estimation res4pleap <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,upperA=ua,type = "eap") ## A special on robust estimation: # it reproduces the example given in Schuster & Ke-Hai 2011: diffpar <- c(-3,-2,-1,0,1,2,3) AWM <- matrix(0,7,7) diag(AWM) <- 1 res1plmle <- PP_4pl(respm = AWM,thres = diffpar, type = "mle") summary(res1plmle) res1plrob <- PP_4pl(respm = AWM,thres = diffpar, type = "robust") summary(res1plrob)
################# 4 PL ############################################################# ### real data ########## data(pp_amt) d <- as.matrix(pp_amt$daten_amt[,-(1:7)]) rd_res <- PP_4pl(respm = d, thres = pp_amt$betas[,2], type = "wle") summary(rd_res) rd_res1 <- PP_4pl(respm = d, thres = pp_amt$betas[,2], theta_start = 0,type = "wle") summary(rd_res1) ### fake data ########## # smaller ... faster set.seed(1522) # intercepts diffpar <- seq(-3,3,length=12) # slope parameters sl <- round(runif(12,0.5,1.5),2) la <- round(runif(12,0,0.25),2) ua <- round(runif(12,0.8,1),2) # response matrix awm <- matrix(sample(0:1,10*12,replace=TRUE),ncol=12) ## 1PL model ##### # MLE res1plmle <- PP_4pl(respm = awm,thres = diffpar,type = "mle") # WLE res1plwle <- PP_4pl(respm = awm,thres = diffpar,type = "wle") # MAP estimation res1plmap <- PP_4pl(respm = awm,thres = diffpar,type = "map") # EAP estimation res1pleap <- PP_4pl(respm = awm,thres = diffpar,type = "eap") # robust estimation res1plrob <- PP_4pl(respm = awm,thres = diffpar,type = "robust") # summarize results summary(res1plmle) summary(res1plwle) summary(res1plmap) ## 2PL model ##### # MLE res2plmle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,type = "mle") # WLE res2plwle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,type = "wle") # MAP estimation res2plmap <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,type = "map") # EAP estimation res2pleap <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,type = "eap") # robust estimation res2plrob <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,type = "robust") ## 3PL model ##### # MLE res3plmle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,type = "mle") # WLE res3plwle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,type = "wle") # MAP estimation res3plmap <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,type = "map") # EAP estimation res3pleap <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la, type = "eap") ## 4PL model ##### # MLE res4plmle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,upperA=ua,type = "mle") # WLE res4plwle <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,upperA=ua,type = "wle") # MAP estimation res4plmap <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,upperA=ua,type = "map") # EAP estimation res4pleap <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,lowerA = la,upperA=ua,type = "eap") ## A special on robust estimation: # it reproduces the example given in Schuster & Ke-Hai 2011: diffpar <- c(-3,-2,-1,0,1,2,3) AWM <- matrix(0,7,7) diag(AWM) <- 1 res1plmle <- PP_4pl(respm = AWM,thres = diffpar, type = "mle") summary(res1plmle) res1plrob <- PP_4pl(respm = AWM,thres = diffpar, type = "robust") summary(res1plrob)
This dataset contains real data from the 'Adaptive Matrices Test' (AMT), which is a computer-administered test. This power test assesses logical reasoning as an indicator of general intelligence. The ability to identify regularities and draw logical conclusions is a very good predictor of long-term success at work. The dataset is sparse, because the test tailores a specific set of items for each examinee's ability level. (More information about adaptive testing: https://en.wikipedia.org/wiki/Computerized_adaptive_testing)
A list with two data.frames. The first data.frame 'daten_amt' contains 298 columns and 710 rows. Each row contains responses from on examinee. The second data.frame 'betas' contains the difficulty parameter (1PL) (These parameters came with the raw-score extraction.).
The data are provided from the Unitersity of Vienna, Faculty of Psychology, Department of Psychological Assessment. Thanks to Schuhfried https://marketplace.schuhfried.com/de/AMT.
Division of Psychological Assessment and Applied Psychometrics, Fakulty of Psychology, University of Vienna
ID: id of person
AGE: age in years (with ages below 18 and above 34 are collapsed)
TE_GA:
TE: self-assessment. To pass a psychological assessment course, the students have to complete several hours self assessment on a bunch of tests, to get familiar with them.
GA: testing for an assessment report. The students also have to test other people (not psychologists nor psychology students) in order to write an assessment report.
FORM: There are several different versions of this test, which differ in test length, duration etc ...
TIME1: start time
TIME2: end time
REL: reliability for each person
i: items
Hornke, L. F., Etzel, S., & Rettig, K. (2003). Manual Adaptive Matrices Test (AMT). Moedling: SCHUHFRIED GmbH.
Compute person parameters for the GPCM and choose between five common estimation techniques: ML, WL, MAP, EAP and a robust estimation. All item parameters are treated as fixed.
PP_gpcm( respm, thres, slopes, theta_start = NULL, mu = NULL, sigma2 = NULL, type = "wle", maxsteps = 100, exac = 0.001, H = 1, ctrl = list() )
PP_gpcm( respm, thres, slopes, theta_start = NULL, mu = NULL, sigma2 = NULL, type = "wle", maxsteps = 100, exac = 0.001, H = 1, ctrl = list() )
respm |
An integer matrix, which contains the examinees responses. A persons x items matrix is expected. |
thres |
A numeric matrix which contains the threshold parameter for each item. If the first row of the matrix is not set to zero (only zeroes in the first row) - then a row-vector with zeroes is added by default. |
slopes |
A numeric vector, which contains the slope parameters for each item - one parameter per item is expected. |
theta_start |
A vector which contains a starting value for each person. If NULL is submitted, the starting values are set automatically. If a scalar is submitted, this start value is used for each person. |
mu |
A numeric vector of location parameters for each person in case of MAP or EAP estimation. If nothing is submitted this is set to 0 for each person for MAP estimation. |
sigma2 |
A numeric vector of variance parameters for each person in case of MAP or EAP estimation. If nothing is submitted this is set to 1 for each person for MAP estimation. |
type |
Which maximization should be applied? There are five valid entries possible: "mle", "wle", "map", "eap" and "robust". To choose between the methods, or just to get a deeper understanding the papers mentioned below are quite helpful. The default is |
maxsteps |
The maximum number of steps the NR Algorithm will take. Default = 100. |
exac |
How accurate are the estimates supposed to be? Default is 0.001. |
H |
In case |
ctrl |
more controls
|
Please note, that robust
estimation with (Huber ability estimate) polytomous items is still experimental!
The probability choosing the k-th category is as follows:
In our case is to be estimated. The item parameters are assumed as fixed (usually these are estimates of a former scaling procedure).
The model simplifies to the Partial Credit Model by setting .
The function returns a list with the estimation results and pretty much everything which has been submitted to fit the model. The estimation results can be found in OBJ$resPP
. The core result is a number_of_persons x 2 matrix, which contains the ability estimate and the SE for each submitted person.
Manuel Reif
Baker, Frank B., and Kim, Seock-Ho (2004). Item Response Theory - Parameter Estimation Techniques. CRC-Press.
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149-174.
Muraki, Eiji (1992). A Generalized Partial Credit Model: Application of an EM Algorithm. Applied Psychological Measurement, 16, 159-176.
Muraki, Eiji (1993). Information Functions of the Generalized Partial Credit Model. Applied Psychological Measurement, 17, 351-363.
Samejima, Fumiko (1993). The bias function of the maximum likelihood estimate of ability for the dichotomous response level. Psychometrika, 58, 195-209.
Samejima, Fumiko (1993). An approximation of the bias function of the maximum likelihood estimate of a latent variable for the general case where the item responses are discrete. Psychometrika, 58, 119-138.
Schuster, C., & Yuan, K. H. (2011). Robust estimation of latent ability in item response models. Journal of Educational and Behavioral Statistics, 36(6), 720-735.
Wang, S. and Wang, T. (2001). Precision of Warm's Weighted Likelihood Estimates for a Polytomous Model in Computerized Adaptive Testing. Applied Psychological Measurement, 25, 317-331.
Warm, Thomas A. (1989). Weighted Likelihood Estimation Of Ability In Item Response Theory. Psychometrika, 54, 427-450.
PPass, PPall, PP_4pl, JKpp, PV
################# GPCM ########################################################################### # some threshold parameters THRES <- matrix(c(-2,-1.23,1.11,3.48,1 ,2,-1,-0.2,0.5,1.3,-0.8,1.5),nrow=2) # slopes sl <- c(0.5,1,1.5,1.1,1,0.98) awmatrix <- matrix(c(1,0,2,0,1,1,1,0,0,1 ,2,0,0,0,0,0,0,0,0,1,1,2,2,1,1,1,1,0,0,1),byrow=TRUE,nrow=5) ## GPCM model ##### # MLE resgpcmlmle <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = sl,type = "mle") # WLE resgpcmwle <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = sl,type = "wle") # MAP estimation resgpcmmap <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = sl,type = "map") # EAP estimation resgpcmeap <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = sl,type = "eap") # robust estimation resgpcmrob <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = sl,type = "robust") ## PCM model ##### # MLE respcmlmle <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = rep(1,ncol(THRES)),type = "mle") # WLE respcmwle <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = rep(1,ncol(THRES)),type = "wle") # MAP estimation respcmmap <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = rep(1,ncol(THRES)), type = "map") # EAP estimation respcmeap <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = rep(1,ncol(THRES)), type = "eap") #### with different number of categories ## THRES <- matrix(c(-2,-1.23,1.11,3.48,1,2,-1,-0.2,0.5,1.3,-0.8,1.5),nrow=2) THRES1 <- rbind(THRES,c(NA,NA,NA,NA,1.7,1)) awmatrix1 <- matrix(c(1,0,2,0,1,3,1,0,0,1,3,1,0,0 ,0,0,0,0,0,1,1,2,2,1,1,1,1,0,0,1), byrow=TRUE, nrow=5) # MLE estimation respcmlmle1 <- PP_gpcm(respm = awmatrix1,thres = THRES1, slopes = sl,type = "mle") # WLE estimation respcmwle1 <- PP_gpcm(respm = awmatrix1,thres = THRES1, slopes = sl,type = "wle") # MAP estimation respcmmap1 <- PP_gpcm(respm = awmatrix1,thres = THRES1, slopes = sl,type = "map") # EAP estimation respcmeap1 <- PP_gpcm(respm = awmatrix1, thres = THRES1, slopes = sl,type = "eap")
################# GPCM ########################################################################### # some threshold parameters THRES <- matrix(c(-2,-1.23,1.11,3.48,1 ,2,-1,-0.2,0.5,1.3,-0.8,1.5),nrow=2) # slopes sl <- c(0.5,1,1.5,1.1,1,0.98) awmatrix <- matrix(c(1,0,2,0,1,1,1,0,0,1 ,2,0,0,0,0,0,0,0,0,1,1,2,2,1,1,1,1,0,0,1),byrow=TRUE,nrow=5) ## GPCM model ##### # MLE resgpcmlmle <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = sl,type = "mle") # WLE resgpcmwle <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = sl,type = "wle") # MAP estimation resgpcmmap <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = sl,type = "map") # EAP estimation resgpcmeap <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = sl,type = "eap") # robust estimation resgpcmrob <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = sl,type = "robust") ## PCM model ##### # MLE respcmlmle <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = rep(1,ncol(THRES)),type = "mle") # WLE respcmwle <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = rep(1,ncol(THRES)),type = "wle") # MAP estimation respcmmap <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = rep(1,ncol(THRES)), type = "map") # EAP estimation respcmeap <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = rep(1,ncol(THRES)), type = "eap") #### with different number of categories ## THRES <- matrix(c(-2,-1.23,1.11,3.48,1,2,-1,-0.2,0.5,1.3,-0.8,1.5),nrow=2) THRES1 <- rbind(THRES,c(NA,NA,NA,NA,1.7,1)) awmatrix1 <- matrix(c(1,0,2,0,1,3,1,0,0,1,3,1,0,0 ,0,0,0,0,0,1,1,2,2,1,1,1,1,0,0,1), byrow=TRUE, nrow=5) # MLE estimation respcmlmle1 <- PP_gpcm(respm = awmatrix1,thres = THRES1, slopes = sl,type = "mle") # WLE estimation respcmwle1 <- PP_gpcm(respm = awmatrix1,thres = THRES1, slopes = sl,type = "wle") # MAP estimation respcmmap1 <- PP_gpcm(respm = awmatrix1,thres = THRES1, slopes = sl,type = "map") # EAP estimation respcmeap1 <- PP_gpcm(respm = awmatrix1, thres = THRES1, slopes = sl,type = "eap")
Compute person parameters for the 1,2,3,4-PL model and for the GPCM. Choose between ML, WL, MAP, EAP and robust estimation. Use this function if 4-PL items and GPCM items are mixed for each person.
PPall( respm, thres, slopes, lowerA, upperA, theta_start = NULL, mu = NULL, sigma2 = NULL, type = "wle", model2est, maxsteps = 100, exac = 0.001, H = 1, ctrl = list() ) ## S3 method for class 'ppeo' print(x, ...) ## S3 method for class 'ppeo' summary(object, nrowmax = 15, ...)
PPall( respm, thres, slopes, lowerA, upperA, theta_start = NULL, mu = NULL, sigma2 = NULL, type = "wle", model2est, maxsteps = 100, exac = 0.001, H = 1, ctrl = list() ) ## S3 method for class 'ppeo' print(x, ...) ## S3 method for class 'ppeo' summary(object, nrowmax = 15, ...)
respm |
An integer matrix, which contains the examinees responses. A persons x items matrix is expected. |
thres |
A numeric matrix which contains the threshold parameter for each item. If the first row of the matrix is not set to zero (only zeroes in the first row) - then a row-vector with zeroes is added by default. |
slopes |
A numeric vector, which contains the slope parameters for each item - one parameter per item is expected. |
lowerA |
A numeric vector, which contains the lower asymptote parameters (kind of guessing parameter) for each item. In the case of polytomous items, the value must be 0. |
upperA |
numeric vector, which contains the upper asymptote parameters for each item. In the case of polytomous items, the value must be 1. |
theta_start |
A vector which contains a starting value for each person. If NULL is submitted, the starting values are set automatically. If a scalar is submitted, this start value is used for each person. |
mu |
A numeric vector of location parameters for each person in case of MAP estimation. If nothing is submitted this is set to 0 for each person for MAP estimation. |
sigma2 |
A numeric vector of variance parameters for each person in case of MAP or EAP estimation. If nothing is submitted this is set to 1 for each person for MAP estimation. |
type |
Which maximization should be applied? There are five valid entries possible: "mle", "wle", "map", "eap" and "robust". To choose between the methods, or just to get a deeper understanding the papers mentioned below are quite helpful. The default is |
model2est |
A character vector with length equal to the number of submitted items. It defines itemwise the response model under which the item parameter was estimated. There are 2 valid inputs up to now: |
maxsteps |
The maximum number of steps the NR algorithm will take. Default = 100. |
exac |
How accurate are the estimates supposed to be? Default is 0.001. |
H |
In case |
ctrl |
More controls:
|
x |
an object of class |
... |
just some points. |
object |
An object of class |
nrowmax |
When printing the matrix of estimates - how many rows should be shown? Default = 15. |
For a test with both: dichotomous and polytomous items which have been scaled under 1/2/3/4-PL model or the GPCM, use this function to estimate the person ability parameters. You have to define the appropriate model for each item.
Please note, that robust
estimation with (Huber ability estimate) polytomous items is still experimental!
The function returns a list with the estimation results and pretty much everything which has been submitted to fit the model. The estimation results can be found in OBJ$resPP
. The core result is a number_of_persons x 2 matrix, which contains the ability estimate and the SE for each submitted person.
Manuel Reif
Baker, Frank B., and Kim, Seock-Ho (2004). Item Response Theory - Parameter Estimation Techniques. CRC-Press.
Barton, M. A., & Lord, F. M. (1981). An Upper Asymptote for the Three-Parameter Logistic Item-Response Model.
Magis, D. (2013). A note on the item information function of the four-parameter logistic model. Applied Psychological Measurement, 37(4), 304-315.
Muraki, Eiji (1992). A Generalized Partial Credit Model: Application of an EM Algorithm. Applied Psychological Measurement, 16, 159-176.
Muraki, Eiji (1993). Information Functions of the Generalized Partial Credit Model. Applied Psychological Measurement, 17, 351-363.
Samejima, Fumiko (1993). The bias function of the maximum likelihood estimate of ability for the dichotomous response level. Psychometrika, 58, 195-209.
Samejima, Fumiko (1993). An approximation of the bias function of the maximum likelihood estimate of a latent variable for the general case where the item responses are discrete. Psychometrika, 58, 119-138.
Schuster, C., & Yuan, K. H. (2011). Robust estimation of latent ability in item response models. Journal of Educational and Behavioral Statistics, 36(6), 720-735.
Wang, S. and Wang, T. (2001). Precision of Warm's Weighted Likelihood Estimates for a Polytomous Model in Computerized Adaptive Testing. Applied Psychological Measurement, 25, 317-331.
Warm, Thomas A. (1989). Weighted Likelihood Estimation Of Ability In Item Response Theory. Psychometrika, 54, 427-450.
Yen, Y.-C., Ho, R.-G., Liao, W.-W., Chen, L.-J., & Kuo, C.-C. (2012). An empirical evaluation of the slip correction in the four parameter logistic models with computerized adaptive testing. Applied Psychological Measurement, 36, 75-87.
PPass, PP_gpcm, PP_4pl, JKpp, PV
################# GPCM and 4PL mixed ######################################### # some threshold parameters THRES <- matrix(c(-2,-1.23,1.11,3.48,1 ,2,-1,-0.2,0.5,1.3,-0.8,1.5),nrow=2) # slopes sl <- c(0.5,1,1.5,1.1,1,0.98) THRESx <- THRES THRESx[2,1:3] <- NA # for the 4PL item the estimated parameters are submitted, # for the GPCM items the lower asymptote = 0 # and the upper asymptote = 1. la <- c(0.02,0.1,0,0,0,0) ua <- c(0.97,0.91,1,1,1,1) awmatrix <- matrix(c(1,0,1,0,1,1,1,0,0,1 ,2,0,0,0,0,0,0,0,0,1 ,1,2,2,1,1,1,1,0,0,1),byrow=TRUE,nrow=5) # create model2est # this function tries to help finding the appropriate # model by inspecting the THRESx. model2est <- findmodel(THRESx) # MLE respmixed_mle <- PPall(respm = awmatrix,thres = THRESx, slopes = sl,lowerA = la, upperA=ua,type = "mle", model2est=model2est) # WLE respmixed_wle <- PPall(respm = awmatrix,thres = THRESx, slopes = sl,lowerA = la, upperA=ua,type = "wle", model2est=model2est) # MAP estimation respmixed_map <- PPall(respm = awmatrix,thres = THRESx, slopes = sl,lowerA = la, upperA=ua, type = "map", model2est=model2est) # EAP estimation respmixed_eap <- PPall(respm = awmatrix,thres = THRESx, slopes = sl,lowerA = la, upperA=ua, type = "eap", model2est=model2est) # Robust estimation respmixed_rob <- PPall(respm = awmatrix,thres = THRESx, slopes = sl,lowerA = la, upperA=ua, type = "robust", model2est=model2est) # summary to summarize the results summary(respmixed_mle) summary(respmixed_wle) summary(respmixed_map) summary(respmixed_eap) summary(respmixed_rob)
################# GPCM and 4PL mixed ######################################### # some threshold parameters THRES <- matrix(c(-2,-1.23,1.11,3.48,1 ,2,-1,-0.2,0.5,1.3,-0.8,1.5),nrow=2) # slopes sl <- c(0.5,1,1.5,1.1,1,0.98) THRESx <- THRES THRESx[2,1:3] <- NA # for the 4PL item the estimated parameters are submitted, # for the GPCM items the lower asymptote = 0 # and the upper asymptote = 1. la <- c(0.02,0.1,0,0,0,0) ua <- c(0.97,0.91,1,1,1,1) awmatrix <- matrix(c(1,0,1,0,1,1,1,0,0,1 ,2,0,0,0,0,0,0,0,0,1 ,1,2,2,1,1,1,1,0,0,1),byrow=TRUE,nrow=5) # create model2est # this function tries to help finding the appropriate # model by inspecting the THRESx. model2est <- findmodel(THRESx) # MLE respmixed_mle <- PPall(respm = awmatrix,thres = THRESx, slopes = sl,lowerA = la, upperA=ua,type = "mle", model2est=model2est) # WLE respmixed_wle <- PPall(respm = awmatrix,thres = THRESx, slopes = sl,lowerA = la, upperA=ua,type = "wle", model2est=model2est) # MAP estimation respmixed_map <- PPall(respm = awmatrix,thres = THRESx, slopes = sl,lowerA = la, upperA=ua, type = "map", model2est=model2est) # EAP estimation respmixed_eap <- PPall(respm = awmatrix,thres = THRESx, slopes = sl,lowerA = la, upperA=ua, type = "eap", model2est=model2est) # Robust estimation respmixed_rob <- PPall(respm = awmatrix,thres = THRESx, slopes = sl,lowerA = la, upperA=ua, type = "robust", model2est=model2est) # summary to summarize the results summary(respmixed_mle) summary(respmixed_wle) summary(respmixed_map) summary(respmixed_eap) summary(respmixed_rob)
Estimate Person Paramters and calculate Person Fit in one step to gain resonse pattern assessment. Submit a data.frame which contains item responses, or an fitted model (Rasch Model and Partial Credit Model are supported) of the eRm
package.
PPass(...) ## Default S3 method: PPass( respdf, items = "all", mod = c("1PL", "2PL", "3PL", "4PL", "PCM", "GPCM", "MIXED"), fitindices = c("lz", "lzstar", "infit", "outfit"), ... ) ## S3 method for class 'Rm' PPass(RMobj, fitindices = c("lz", "lzstar", "infit", "outfit"), ...)
PPass(...) ## Default S3 method: PPass( respdf, items = "all", mod = c("1PL", "2PL", "3PL", "4PL", "PCM", "GPCM", "MIXED"), fitindices = c("lz", "lzstar", "infit", "outfit"), ... ) ## S3 method for class 'Rm' PPass(RMobj, fitindices = c("lz", "lzstar", "infit", "outfit"), ...)
respdf |
A data.frame which contains the items, and perhaps other informations. Each row is a person related resonse patter. Each column denotes a variable. |
items |
A numeric (integer) vector which indicates the positions of the items in the data.frame ( |
mod |
Choose your data generating model. This argument switches between the three person parameter estimating functions |
fitindices |
A character vector which denotes the fit indices to compute. |
RMobj |
A fitted Rasch Model ( |
... |
Submit arguments to the underlying functions: |
PPass fuses Person Parameter estimation and Person Fit computation into a single function.
The original data.frame and
The Person Parameter estimates incl. Standard Errors (2 columns)
Person Fit Indices you chose (1 or more)
Manuel Reif, Jan Steinfeld
library(eRm) ### real data ########## data(pp_amt) d <- pp_amt$daten_amt rd_res <- PPass(respdf = d, items = 8:ncol(d), mod="1PL", thres = pp_amt$betas[,2], fitindices = "lz") head(rd_res) ## ========== RM - eRm my_data <- eRm::sim.rasch(200, 12) my_rm <- eRm::RM(my_data) res_pp1 <- PPass(my_rm) ## ========== PCM - eRm set.seed(2751) THRES <- matrix(c(-2,-1.23,1.11,3.48,1 ,2,-1,-0.2,0.5,1.3,-0.8,1.5),nrow=2) THRES <- rbind(THRES,c(-0.2,NA,NA,NA,NA,NA)) sl <- rep(1,6) THRESx <- rbind(0,THRES) THETA <- rnorm(200) simdat_gpcm <- sim_gpcm(thres = THRESx,alpha = sl,theta = THETA) my_pcm <- eRm::PCM(simdat_gpcm) res_pp2 <- PPass(my_pcm) ## ========== 1PL model set.seed(1337) # intercepts diffpar <- seq(-3,3,length=15) # slope parameters sl <- round(runif(15,0.5,1.5),2) la <- round(runif(15,0,0.25),2) ua <- round(runif(15,0.8,1),2) # response matrix awm <- matrix(sample(0:1,100*15,replace=TRUE),ncol=15) awm <- as.data.frame(awm) # estimate person parameter # estimate person parameter and person fit out <- PPass(respdf = awm,thres = diffpar, items="all", mod=c("1PL"), fitindices= c("lz","lzstar","infit","outfit")) # show first rows head(out)
library(eRm) ### real data ########## data(pp_amt) d <- pp_amt$daten_amt rd_res <- PPass(respdf = d, items = 8:ncol(d), mod="1PL", thres = pp_amt$betas[,2], fitindices = "lz") head(rd_res) ## ========== RM - eRm my_data <- eRm::sim.rasch(200, 12) my_rm <- eRm::RM(my_data) res_pp1 <- PPass(my_rm) ## ========== PCM - eRm set.seed(2751) THRES <- matrix(c(-2,-1.23,1.11,3.48,1 ,2,-1,-0.2,0.5,1.3,-0.8,1.5),nrow=2) THRES <- rbind(THRES,c(-0.2,NA,NA,NA,NA,NA)) sl <- rep(1,6) THRESx <- rbind(0,THRES) THETA <- rnorm(200) simdat_gpcm <- sim_gpcm(thres = THRESx,alpha = sl,theta = THETA) my_pcm <- eRm::PCM(simdat_gpcm) res_pp2 <- PPass(my_pcm) ## ========== 1PL model set.seed(1337) # intercepts diffpar <- seq(-3,3,length=15) # slope parameters sl <- round(runif(15,0.5,1.5),2) la <- round(runif(15,0,0.25),2) ua <- round(runif(15,0.8,1),2) # response matrix awm <- matrix(sample(0:1,100*15,replace=TRUE),ncol=15) awm <- as.data.frame(awm) # estimate person parameter # estimate person parameter and person fit out <- PPass(respdf = awm,thres = diffpar, items="all", mod=c("1PL"), fitindices= c("lz","lzstar","infit","outfit")) # show first rows head(out)
This function draws npv
plausible values for each person from their posterior density.
PV(estobj, ...) ## S3 method for class 'fourpl' PV(estobj, npv = 10, approx = TRUE, thinning = 6, burnin = 10, mult = 2, ...) ## S3 method for class 'gpcm' PV(estobj, npv = 10, approx = TRUE, thinning = 6, burnin = 10, mult = 2, ...) ## S3 method for class 'gpcm4pl' PV(estobj, npv = 10, approx = TRUE, thinning = 6, burnin = 10, mult = 2, ...) ## S3 method for class 'pv' print(x, ...) ## S3 method for class 'pv' summary(object, nrowmax = 15, ...)
PV(estobj, ...) ## S3 method for class 'fourpl' PV(estobj, npv = 10, approx = TRUE, thinning = 6, burnin = 10, mult = 2, ...) ## S3 method for class 'gpcm' PV(estobj, npv = 10, approx = TRUE, thinning = 6, burnin = 10, mult = 2, ...) ## S3 method for class 'gpcm4pl' PV(estobj, npv = 10, approx = TRUE, thinning = 6, burnin = 10, mult = 2, ...) ## S3 method for class 'pv' print(x, ...) ## S3 method for class 'pv' summary(object, nrowmax = 15, ...)
estobj |
An object which originates from using |
... |
More arguments |
npv |
The number of (effectively returned) plausible values - default is 10. |
approx |
Whether a normal approximation |
thinning |
A numeric vector of length = 1. If approx = FALSE, a Metropolitan-Hastings-Algorithm draws the plausible values. To avoid autocorrelation, thinning takes every kth value as effective plausible value. The default is 6 (every 6th value is taken), which works appropriately in almost all cases here (with default settings). |
burnin |
How many draws should be discarded at the chains beginning? Default is 10 - and this seems reasonable high (probably 5 will be enough as well), because starting point is the EAP. |
mult |
Multiplication constant (default = 2). Use this parameter to vary the width of the proposal distribution - which is |
x |
An object of class |
object |
An object of class |
nrowmax |
When printing the matrix of estimates - how many rows should be shown? Default = 15. |
The function returns a list which main element is pvdraws
. This is a matrix of size number_of_persons x npv - so if 10 plausible values are requested for 100 persons, a 100x10 matrix is returned.
Manuel Reif
Mislevy, R. J. (1991). Randomization-based inference about latent variables from complex samples. Psychometrika, 56(2), 177-196.
Von Davier, M., Gonzalez, E., & Mislevy, R. (2009). What are plausible values and why are they useful. IERI monograph series, 2, 9-36.
Kruschke, J. (2010). Doing Bayesian data analysis: A tutorial introduction with R. Academic Press.
################# Plausible values ############################################################# ### 4 PL model ###### ### data creation ########## set.seed(1522) # intercepts diffpar <- seq(-3,3,length=12) # slope parameters sl <- round(runif(12,0.5,1.5),2) la <- round(runif(12,0,0.25),2) ua <- round(runif(12,0.8,1),2) # response matrix awm <- matrix(sample(0:1,10*12,replace=TRUE),ncol=12) # EAP estimation - 2pl model res2pleap <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,type = "eap") # draw 10 plausible values res_pv <- PV(res2pleap) summary(res_pv) # draw 10 plausible values - use a metropolitan hastings algorithm res_pv2 <- PV(res2pleap,approx = FALSE) summary(res_pv2) # ------ check the PVs # -- autocorrelation? autocor <- function(acv) { cor(acv[-1],acv[-length(acv)]) } res_pvac <- PV(res2pleap,approx = FALSE,npv = 200) # independent draws - so there cannot be any systematic autocorrelation when # approx = TRUE. So this acts as a kind of benchmark for the MH-Alg. res_pvac2 <- PV(res2pleap,approx = TRUE,npv = 200) apply(res_pvac$pvdraws,1,autocor) apply(res_pvac2$pvdraws,1,autocor) # -- autocorrelation distr? apply(res_pvac$pvdraws,1,quantile) apply(res_pvac2$pvdraws,1, quantile) ### GPCM model ###### # some threshold parameters THRES <- matrix(c(-2,-1.23,1.11,3.48,1 ,2,-1,-0.2,0.5,1.3,-0.8,1.5),nrow=2) # slopes sl <- c(0.5,1,1.5,1.1,1,0.98) awmatrix <- matrix(c(1,0,2,0,1,1,1,0,0,1 ,2,0,0,0,0,0,0,0,0,1,1,2,2,1,1,1,1,0,0,1),byrow=TRUE,nrow=5) # EAP estimation resgpcmeap <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = sl,type = "eap") res_gpcmpv <- PV(resgpcmeap,approx = FALSE,npv = 20) ### GPCM and 4PL model ###### # some threshold parameters THRES <- matrix(c(-2,-1.23,1.11,3.48,1 ,2,-1,-0.2,0.5,1.3,-0.8,1.5),nrow=2) # slopes sl <- c(0.5,1,1.5,1.1,1,0.98) THRESx <- THRES THRESx[2,1:3] <- NA # for the 4PL item the estimated parameters are submitted, # for the GPCM items the lower asymptote = 0 # and the upper asymptote = 1. la <- c(0.02,0.1,0,0,0,0) ua <- c(0.97,0.91,1,1,1,1) awmatrix <- matrix(c(1,0,1,0,1,1,1,0,0,1 ,2,0,0,0,0,0,0,0,0,1 ,1,2,2,1,1,1,1,0,0,1),byrow=TRUE,nrow=5) model2est <- findmodel(THRESx) # EAP estimation respcmeap1 <- PPall(respm = awmatrix,thres = THRESx, slopes = sl,lowerA = la, upperA=ua, type = "eap", model2est=model2est) res_mixedpv_1 <- PV(respcmeap1,approx = FALSE,npv = 200) # rowMeans of plausible values should approximate the EAPs rowMeans(res_mixedpv_1$pvdraws) # EAPs respcmeap1 # show the quantiles of the empirical distribution apply(res_mixedpv_1$pvdraws,1,quantile)
################# Plausible values ############################################################# ### 4 PL model ###### ### data creation ########## set.seed(1522) # intercepts diffpar <- seq(-3,3,length=12) # slope parameters sl <- round(runif(12,0.5,1.5),2) la <- round(runif(12,0,0.25),2) ua <- round(runif(12,0.8,1),2) # response matrix awm <- matrix(sample(0:1,10*12,replace=TRUE),ncol=12) # EAP estimation - 2pl model res2pleap <- PP_4pl(respm = awm,thres = diffpar, slopes = sl,type = "eap") # draw 10 plausible values res_pv <- PV(res2pleap) summary(res_pv) # draw 10 plausible values - use a metropolitan hastings algorithm res_pv2 <- PV(res2pleap,approx = FALSE) summary(res_pv2) # ------ check the PVs # -- autocorrelation? autocor <- function(acv) { cor(acv[-1],acv[-length(acv)]) } res_pvac <- PV(res2pleap,approx = FALSE,npv = 200) # independent draws - so there cannot be any systematic autocorrelation when # approx = TRUE. So this acts as a kind of benchmark for the MH-Alg. res_pvac2 <- PV(res2pleap,approx = TRUE,npv = 200) apply(res_pvac$pvdraws,1,autocor) apply(res_pvac2$pvdraws,1,autocor) # -- autocorrelation distr? apply(res_pvac$pvdraws,1,quantile) apply(res_pvac2$pvdraws,1, quantile) ### GPCM model ###### # some threshold parameters THRES <- matrix(c(-2,-1.23,1.11,3.48,1 ,2,-1,-0.2,0.5,1.3,-0.8,1.5),nrow=2) # slopes sl <- c(0.5,1,1.5,1.1,1,0.98) awmatrix <- matrix(c(1,0,2,0,1,1,1,0,0,1 ,2,0,0,0,0,0,0,0,0,1,1,2,2,1,1,1,1,0,0,1),byrow=TRUE,nrow=5) # EAP estimation resgpcmeap <- PP_gpcm(respm = awmatrix,thres = THRES, slopes = sl,type = "eap") res_gpcmpv <- PV(resgpcmeap,approx = FALSE,npv = 20) ### GPCM and 4PL model ###### # some threshold parameters THRES <- matrix(c(-2,-1.23,1.11,3.48,1 ,2,-1,-0.2,0.5,1.3,-0.8,1.5),nrow=2) # slopes sl <- c(0.5,1,1.5,1.1,1,0.98) THRESx <- THRES THRESx[2,1:3] <- NA # for the 4PL item the estimated parameters are submitted, # for the GPCM items the lower asymptote = 0 # and the upper asymptote = 1. la <- c(0.02,0.1,0,0,0,0) ua <- c(0.97,0.91,1,1,1,1) awmatrix <- matrix(c(1,0,1,0,1,1,1,0,0,1 ,2,0,0,0,0,0,0,0,0,1 ,1,2,2,1,1,1,1,0,0,1),byrow=TRUE,nrow=5) model2est <- findmodel(THRESx) # EAP estimation respcmeap1 <- PPall(respm = awmatrix,thres = THRESx, slopes = sl,lowerA = la, upperA=ua, type = "eap", model2est=model2est) res_mixedpv_1 <- PV(respcmeap1,approx = FALSE,npv = 200) # rowMeans of plausible values should approximate the EAPs rowMeans(res_mixedpv_1$pvdraws) # EAPs respcmeap1 # show the quantiles of the empirical distribution apply(res_mixedpv_1$pvdraws,1,quantile)
This function returns a dichotomous matrix of simulated responses under given item and person parameters.
sim_4pl(beta, alpha, lowerA, upperA, theta)
sim_4pl(beta, alpha, lowerA, upperA, theta)
beta |
A numeric vector which contains the difficulty parameters for each item. |
alpha |
A numeric vector, which contains the slope parameters for each item. |
lowerA |
A numeric vector, which contains the lower asymptote parameters (kind of guessing parameter) for each item. |
upperA |
numeric vector, which contains the upper asymptote parameters for each item. |
theta |
A numeric vector which contains person parameters. |
Manuel Reif
################# simulate 4PL ############################################### set.seed(1700) # simulate 1-PL model ---------- thetas <- c(0.231,-1.313,1.772,1.601,1.733,-2.001,0.443,3.111,-4.156) sl <- c(1,1.1,0.9,0.89,1.5,1.1,1) la <- c(0,0,0.2,0.15,0.04,0,0.21) ua <- c(0.9,0.98,0.97,1,1,1,0.97) simdat1pl <- sim_4pl(beta=seq(-4,4,length.out=7), alpha=rep(1,7), lowerA=rep(0,7), upperA=rep(1,7), theta=thetas) head(simdat1pl) # simulate 2-PL model ---------- simdat2pl <- sim_4pl(beta=seq(-4,4,length.out=7), alpha=sl, lowerA=rep(0,7), upperA=rep(1,7), theta=thetas) head(simdat2pl) # simulate 3-PL model ---------- simdat3pl <- sim_4pl(beta=seq(-4,4,length.out=7), alpha=sl, lowerA=la, upperA=rep(1,7), theta=thetas) head(simdat3pl) # simulate 4-PL model ---------- simdat4pl <- sim_4pl(beta=seq(-4,4,length.out=7), alpha=sl, lowerA=la, upperA=ua, theta=thetas) head(simdat4pl)
################# simulate 4PL ############################################### set.seed(1700) # simulate 1-PL model ---------- thetas <- c(0.231,-1.313,1.772,1.601,1.733,-2.001,0.443,3.111,-4.156) sl <- c(1,1.1,0.9,0.89,1.5,1.1,1) la <- c(0,0,0.2,0.15,0.04,0,0.21) ua <- c(0.9,0.98,0.97,1,1,1,0.97) simdat1pl <- sim_4pl(beta=seq(-4,4,length.out=7), alpha=rep(1,7), lowerA=rep(0,7), upperA=rep(1,7), theta=thetas) head(simdat1pl) # simulate 2-PL model ---------- simdat2pl <- sim_4pl(beta=seq(-4,4,length.out=7), alpha=sl, lowerA=rep(0,7), upperA=rep(1,7), theta=thetas) head(simdat2pl) # simulate 3-PL model ---------- simdat3pl <- sim_4pl(beta=seq(-4,4,length.out=7), alpha=sl, lowerA=la, upperA=rep(1,7), theta=thetas) head(simdat3pl) # simulate 4-PL model ---------- simdat4pl <- sim_4pl(beta=seq(-4,4,length.out=7), alpha=sl, lowerA=la, upperA=ua, theta=thetas) head(simdat4pl)
This function returns an integer matrix of simulated responses under given item and person parameters.
sim_gpcm(thres, alpha, theta)
sim_gpcm(thres, alpha, theta)
thres |
An numeric matrix which contains threshold parameters for each item. The first row must contain zeroes only! |
alpha |
A numeric vector, which contains the slope parameters - one parameter per item is expected. |
theta |
A numeric vector which contains person parameters. |
################# simulate GPCM ############################################### set.seed(1750) THRES <- matrix(c(-2,-1.23,1.11,3.48,1 ,2,-1,-0.2,0.5,1.3,-0.8,1.5),nrow=2) # slopes sl <- c(0.5,1,1.5,1.1,1,0.98) THRESx <- rbind(0,THRES) THETA <- rnorm(100) simdat_gpcm <- sim_gpcm(thres = THRESx,alpha = sl,theta = THETA) head(simdat_gpcm) ### simulate with a different number of categories THRES1 <- rbind(THRESx,c(NA,NA,NA,NA,1.7,1)) THRES1 # last 2 items have +1 category simdat_gpcm2 <- sim_gpcm(thres = THRES1,alpha = sl,theta = THETA) head(simdat_gpcm2) # check the maximum category apply(simdat_gpcm2,2,max)
################# simulate GPCM ############################################### set.seed(1750) THRES <- matrix(c(-2,-1.23,1.11,3.48,1 ,2,-1,-0.2,0.5,1.3,-0.8,1.5),nrow=2) # slopes sl <- c(0.5,1,1.5,1.1,1,0.98) THRESx <- rbind(0,THRES) THETA <- rnorm(100) simdat_gpcm <- sim_gpcm(thres = THRESx,alpha = sl,theta = THETA) head(simdat_gpcm) ### simulate with a different number of categories THRES1 <- rbind(THRESx,c(NA,NA,NA,NA,1.7,1)) THRES1 # last 2 items have +1 category simdat_gpcm2 <- sim_gpcm(thres = THRES1,alpha = sl,theta = THETA) head(simdat_gpcm2) # check the maximum category apply(simdat_gpcm2,2,max)